Tài liệu gồm 146 trang, tuyển chọn câu hỏi và bài tập vectơ trong không gian, quan hệ vuông góc Toán 11, có đáp án và hướng dẫn giải chi tiết.
I – ĐỊNH NGHĨA VÀ CÁC PHÉP TOÁN VỀ VECTƠ TRONG KHÔNG GIAN Cho đoạn thẳng AB trong không gian. Nếu ta chọn điểm đầu là A điểm cuối là B ta có một vectơ, được kí hiệu là AB. Định nghĩa Vectơ trong không gian là một đoạn thẳng có hướng. Kí hiệu AB chỉ vectơ có điểm đầu là A điểm cuối B. Vectơ còn được kí hiệu là a b x y Các khái niệm có liên quan đến vectơ như giá của vectơ, độ dài của vectơ, sự cùng phương, cùng hướng của hai vectơ, vectơ – không, sự bằng nhau của hai vectơ … được định nghĩa tương tự như trong mặt phẳng.
II – ĐIỀU KIỆN ĐỒNG PHẲNG CỦA BA VECTƠ 1. Khái niệm về sự đồng phẳng của ba vectơ trong không gian Trong không gian cho ba vectơ a b c đều khác vectơ – không. Nếu từ một điểm O bất kì ta vẽ OA a OB b OC c thì có thể xả ra hai trường hợp: Trường hợp các đường thẳng OA OB OC không cùng nằm trong một mặt phẳng, khi đó ta nói rằng vectơ a b c không đồng phẳng. Trường hợp các đường thẳng OA OB OC cùng nằm trong một mặt phẳng thi ta nói ba vectơ a b c đồng phẳng.
Trong trường hợp này giá của các vectơ abc luôn luôn song song với một mặt phẳng. a) Ba vectơ a b c không đồng phẳng b) Ba vectơ a b c đồng phẳng Chú ý. Việc xác định sự đồng phẳng hoặc không đồng phẳng của ba vectơ nói trên không phụ thuộc vào việc chọn điểm O. Từ đó ta có định nghĩa sau đây: 2. Định nghĩa Trong không gian ba vectơ được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng. O A B O C A B C a b c a b c 3. Điều kiện để ba vectơ đồng phẳng Từ định nghĩa ba vectơ đồng phẳng và từ định lí về sự phân tích (hay biểu thị) một vectơ theo hai vectơ hai vectơ không cùng phương trong hình học phẳng chúng ta có thể chứng minh được định lí sau đây: Định lí 1 Trong không gian cho hai vectơ a b không cùng phương và vectơ c. Khi đó ba vectơ a b c đồng phẳng khi và chỉ khi có cặp số mn sao cho c ma nb. Ngoài ra cặp số mn là duy nhất. Định lí 2 Trong không gian cho ba vectơ không đồng phẳng a b c. Khi đó với mọi vectơ x ta đều tìm được một bộ ba số m n p sao cho x ma nb pc. Ngoại ra bộ ba số m n p là duy nhất. CÂU HỎI TRẮC NGHIỆM.
[ads]